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Abstract—Mode I steady-state, quasi-static crack propagation is analysed for elastoplastic pressure-
sensitive solids. In particular, reference is made to the incremental small strain elastoplasticity
obeying the Drucker-Prager yield condition with associative flow law. The asymptotic crack-tip
fields are numerically obtained for the case of linear-isotropic hardening, under plane stress and
plane strain conditions.

1. INTRODUCTION

The problem of the determination of asymptotic stress and strain fields in the plastic zone
near a crack tip for elastoplastic materials under mode I conditions has been extensively
analysed. In particular, the case of quasi-static growth for ideal plasticity was analysed by
Slepyan (1974), Gao (1987), Rice et al. (1980), Drugan et al. (1982) and Rice (1982). The
case of J,-flow theory with linear hardening was first studied by Amazigo and Hutchinson
(1977) on the basis of previous works on the singularity ahead of a stationary crack for J,-
deformation theory of plasticity (Hutchinson, 1968a,b; Rice and Rosengren, 1968). The
problem was further developed by considering plastic reloading on crack flanks by Ponte
Castafieda (1987a). Finally Achenbach et al. (1981) and Ostlund and Gudmundson (1988)
considered dynamic propagation.

In pressure-sensitive materials, the yield locus is dependent on the mean normal stress.
Therefore the J,-flow theory becomes inadequate. The yield surface proposed by Drucker
and Prager (1952) is a modification of the Huber—von Mises criterion, represented by a
cone in the Haigh—-Westergaard stress space. This criterion may be appropriate for the
description of the behavior of various materials. In fact, for porous metals (Needleman and
Rice, 1978), metals showing the Strength Differential (S-D) effect (Drucker, 1973 ; Gupta,
1977; Spitzig et al., 1975, 1976), plastics (Carapellucci and Yee, 1986; Spitzig and
Richmond, 1979 ; Whitney and Andrews, 1967), ceramics (Chen and Reyes-Morel, 1986 ;
Reyes-Morel and Chen, 1988), concrete (Kotsovos and Newman, 1978), soils and rocks
(Evans and Wong, 1985 ; Rudnicki, 1977), the Drucker—Prager yield criterion is suitable in
the modeling of the appearance of inelastic deformations. When used in connection with
the associative flow-rule, the Drucker—Prager yield function predicts a plastic volumetric
dilatancy, that generally is an overestimation of the dilatancy observed in the experiments.
In fact, the experimental results on high strength steels showing the S-D effect of Spitzig et
al. (1976) show a dilatancy 15 times inferior to that predicted by the associative law. The
experimentally observed dilatancy becomes six times inferior in the case of polyethylene
(Spitzig and Richmond, 1979), and, finally, in zirconia-containing ceramics the dilatancy
fits coherently with the predictions of the associative flow-rule (Reyes-Morel and Chen,
1988). It is to be observed, however, that the dilatancy measurements are generally averaged
over a finite zone and thus such global measure of dilatancy can underestimate the dilatancy
in a fracture process zone. Therefore, an asymptotic determination of near-tip stress and
strain fields for an elastoplastic model, based on the Drucker—Prager yield surface with
associative flow-rule, may be useful for the understanding of fracture in ceramics, amorph-
ous rocks at low temperature, plastics and metals showing the S-D effect. For ductile
pressure-sensitive materials, like porous and void nucleating metals, numerous F.E. simu-
lations [see, e.g. Aoki et al. (1984, 1987), Needleman and Tvergaard (1987, 1992)] have
been performed for static and dynamic crack problems, using the Gurson (1977) model. It
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is to be mentioned that these models are in essence similar to a Drucker—Prager model with
non-associative flow-rule in which the yield surface gradient and the flow-mode tensor
change their direction in the stress space during plastic deformation.

Li and Pan (1990a,b) and Li (1992) studied the asymptotic fields of a stationary crack
for ideal plasticity and for deformation theory adopting Drucker—Prager yield surface
with associative flow-rule. As is well-known, the deformation theory of plasticity can be
considered a good approximation of the real elastoplastic behavior only under peculiar
conditions (Budiansky, 1959). Therefore, except for the statical problem, i.e. in the case of
crack propagation, the appearance of elastic sectors in the solution [see, e.g. Amazigo and
Hutchinson (1977)] makes the resuits of deformation theory questionable.

The present paper is addressed to the study of mode I steady-state crack propagation in
elastoplastic solids with the Drucker—Prager yield condition and linear-isotropic hardening.
Numerical results are given for the amplitude of the plastic sector, for the order of the stress
singularity and for the near tip stress and velocity fields. The results are obtained for various
values of the hardening parameter and of the pressure-sensitivity parameter u, with a
procedure similar to that of Ponte Castafieda (1987a).

Under conditions of plane stress, in connection with the increase in the pressure-
sensitivity, a substantial decrease is observed in the ratio between the radial and the hoop
stresses ahead of the crack tip. In particular, for low values of hardening, the mentioned
ratio tends to zero when u approaches a definite value between 0.8 and 0.9. Moreover, a
decrease is observed in the opening stress and in the mean stress directly ahead of the tip
in relation to the increase of the pressure-sensitivity. Further, the size of the plastic sector
ahead of the tip decreases by increasing the pressure-sensitivity. These circumstances are in
good agreement with the results of Li and Pan (1990b) and Li (1992) for a stationary crack
in the elastic—perfectly plastic theory.

Under conditions of plane strain, the pressure-sensitivity relaxes the stress deviator
ahead of the crack tip. This result is coherent with those of Li and Pan (1990a) and, for a
different pressure-sensitive model, of Hutchinson (1982). Moreover, analogously to the
case of plane stress, the singularity of the fields becomes weaker by increasing the pressure-
sensitivity. The pressure-sensitivity of the model adopted leaves open the possibility of
taking the effect of the non-associativity of the flow-rule into account. This possibility is
systematically explored elsewhere (Radi and Bigoni, 1992), in the case of plane stress.

2. BASIC RELATIONSHIPS

Constitutive equations
Reference is made to an isotropic elastoplastic model with linear hardening based on
the Drucker—Prager (1952) yield function:

£(0) = gtr 6+ ST —~%, )

where a denotes the stress tensor, J, the second invariant of deviatoric stress, the hardening
parameter £ is 1/\/5 times the radius of the section of the yield surface with the n-plane in
the Haigh—Westergaard stress space and u is the measure of the pressure-sensitivity. In
particular, y is related to the flow strengths in tension f; and compression f; by the relation :

N @

The elastoplastic stress—strain relationships relating the stress rate ¢ to the velocity of
deformation & can be deduced, via Prager consistency, to the form:
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Fig. 1. Stress—(engineering)strain relation in shear.

é= %[(1 +v)d —v(tr )1+ é(Q'@Q]’ )

where v is the Poisson ratio, E the elastic modulus, 4 the hardening modulus divided by E,
the symbol { ) denotes the McAulay brackets, i.e. the operator {y> = (y+|y)/2 (YyeR),
and Q is the gradient of the yield function (1):

S
Q=51+ —,
2./J>

4)

where S is the deviatoric stress. As is well known, eqn (3) holds only if the stress point lies
on the yield surface, i.e. if f = 0.

It is to be remarked that the model reduces to the J, elastoplasticity, when the parameter
u is set equal to zero.

Finally, it should be noted that the hardening modulus is related to the ratio « between
the tangent modulus G, and the elastic shear modulus (Fig. 1) and to the ratio y between
the uniaxial tangent modulus and the elastic modulus, through the equations:

a—]=1+__1_,_ x—l=1+l(ﬁ+_l_>2 (5)
20+ )4’ 3% )

where the positive sign in (5,) refers to uniaxial tension and the negative to uniaxial
compression. In the case u = 0 and v = 1/2, eqns (5) yield o = .

Kinematic conditions

A Cartesian reference system is employed, as indicated in Fig. 2, with the origin
attached to the moving crack tip. The x;-axis is oriented in the direction of the crack
advance and the x;-axis coincides with the direction of zero stress (strain) in plane stress
(strain). For this choice of the reference frame, the steady-state propagation condition
implies that any material derivative can be identified with a spatial derivative in the direction
X, L€,

) =~70)s (6

where ¥~ denotes the (constant) crack-tip speed and comma indicates differentiation.

/(

9

x1 .
0

crack tip

Fig. 2. Frame of references on the crack tip.
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However, eqn (6) can be considered well approximated even for non-constant tip speed,
when r — 0 (Ostlund and Gudmundson, 1988).

The plane stress (strain) problem presents five (six) unknowns, i.¢. the non-zero stress
components and the two in-plane velocities v,, v,, related to the velocity of deformation
through the compatibility condition

& =3[+ (W] @)

Equations (3), together with the equilibrium equations, allow us to solve the problem of
near crack-tip field determination.

Egquilibrium equations

For algebraic convenience, a cylindrical coordinate system (r, 3, x;) is introduced.
Symmetry of the mode I problem restricts the analysis to the interval 0 € 3 < n. The
equilibrium equations (under plane conditions) in cylindrical coordinates are written as:

(rarr),r + 0,99 —0g33 = Oa

(rars),r + 093,9 + g9 = 0- (8)

Form of solution
By using (6) and taking into account the transformation rule of differentiation, between
Cartesian and polar coordinates:

in 9
()a=0c0s9( )= =22 ),

cos 9
r

( )2=sind( ), +

( o )

the following expressions of the components of the stress rate tensor in cylindrical coor-
dinates are obtained (see Appendix):

sin 8 1.
Go=7YV [-r— G,53—cos 3 0,5,+ = sin 9 (0',,—0'93)],

sin § 2.
G,=" (-—r g,s—cos S0, ,— " sin 8 U,g),

. sin & 2.
Ogs = v ; Ggg,9—COS 3 0'_93,,+ ;Sln 3 g, |,

0 (plane stress),

633 = V(sin\‘) (10)

G333—C0S J 03 3,,) (plane strain).

Moreover, in cylindrical coordinates, (7) becomes :
érr = Ur.ra

. 1
Egg = 7 (vs5+v,),

) 1 1
&9 = ‘2‘ [US,r + ; (vr.S - US)]a
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. vs3 (plane stress), ;
#3=0  (plane strain). an

It is worth noting that the equilibrium equations (8) and the constitutive relations (3)
are homogeneous in r and, therefore, solutions are sought [e.g. Amazigo and Hutchinson
(1977) and Ponte Castafieda (1987)] in a separable form, similar to the HRR fields
(Hutchinson, 1968a,b; Rice and Rosengren, 1968) :

1
v,(r, '9) = Vf;yl(‘g)s

1
vo(r,9) = ¥~ 209),

0',3(", ‘9) = Efyfi(‘g)a
0',,(?', ‘9) = E_’t’y‘i(s)s
a55(r, 8) = Er'ys(9),

0 (plane stress),
033(r,9) = {Ef‘ys@) (plane strain), ; (12)

where s is the stress singularity coefficient and the r subscript bar denotes that this variable
is non-dimensionalized with respect to any characteristic dimension of the plastic zone.
The indetermination in the choice of the non-dimensionalization reflects the well-known
circumstance (Ponte Castafieda, 1987b) that the stress solution will be known except for
an amplitude factor.

Unloading condition
The generic particle ahead of the crack tip, moving towards the tip, experiences
unloading when the plastic multiplier becomes negative, i.e. when

Q:6<0. (13)

Reloading condition on crack flanks

Possibility of plastic reloading on crack flanks is allowed for by assuming [see Ponte
Castafieda (1987a) and Ostlund and Gudmundson (1988)] that reloading takes place when
the stress state of the generic particle in the wake of the crack reaches the yield surface that
was left at unloading. In other words, assuming a straight path motion of particles, the
particle position at coordinate ¥, is singled by its angular coordinate § = tan~! (%,/x,)
(Fig. 3). Therefore, by introducing the effective stress o, (defined in such a way that it
reduces to the non-zero stress component in uniaxial tension) :

xg &/
w i 4 i
N2 unloading I s / loading
- & sector . sector
¢ / P
_ N\ T
Xp reloading N / 3
sector - .
5 X
crack tip

Fig. 3. Loading history of a generic material particle.
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3
0. = [§ tro+ J:] = Ery.(9), (14)
p+./3
reloading takes place at the angle 3,, if
ye(31)/(sin 81)" = ye(9,)/(sin §,)° and Q-¢ >0, 15)

where 3, is the angle corresponding to the elastic unloading and . (9) is defined in agreement
with (12). However, it is important to mention that (as in the J, plane stress case) reloading
will be not revealed in the performed numerical analyses under plane stress conditions,
whereas reloading will be found in plane strain.

Continuity conditions across the elastic—plastic boundaries
The continuity of displacements and velocities are requested across the elastic—plastic
boundaries. Moreover, continuity of tractions implies :

[oss] = [6:5] =0, (16)

where the symbol [ ] stands for a jump in the relevant argument. However, the continuity
of the radial stress and of the strain components is not trivial. As a matter of fact, it is
proved that (Drugan and Rice, 1984 ; Drugan and Shen, 1990 ; Narasimhan and Rosakis,
1987 ; Nemat-Nasser and Gao, 1988), for quasi-static problems in elastoplasticity with
(positive) isotropic hardening, all the stress components must be continuous if the material
is stable in the Drucker sense. Thus, for the present model, full continuity of stress com-
ponents must be imposed across the elastic—plastic boundaries.

3. PLANE STRESS

The plane stress conditions
033 =013=023=0 a7

make &;; dependent on the non-zero components of d¢. In fact, from (3), it is readily
obtained :

1 1
£33 =E|:—V(dn+dss)+ Z(Q"*)Qaa:l- (18)

Equations (8) and (3), using (10,_5) and (11), yield a system of five first order Partial
Differential Equations (PDEs) in the five dependent variables v,, v, 6,,, 653 and o,.

System of ODEs
The substitution of (12) into (8) and (3) yields a system of five first order Ordinary
Differential Equations (ODEs) in the standard form:

y =1(y,9,s,sign(f(0)), sign(Q-d)). 19

It should be stressed that the form of system (19) depends on the condition of plastic
loading, i.e. on sign (f(s)) and sign (Q"4). In fact, unloading occurs when the plastic
multiplier becomes negative whereas plastic reloading occurs when the yield function is
reached again, i.e. when f(6) becomes zero.

The system (19) is written as:
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¥y =ys—(+ 1Dy, (20a)
¥s= —(s+2)y:;, (20b)

1 .
#4= 1L+ Q—vs)sin 3 g3+ 5(y4—vys) cos 9]

+$—>L[ﬁ 2y~ ys
A AAL3 6 /T,

][@, sin 9 g3+ 50, cos 9], (20c)

N
/7,

yr= —g1—ssin 3 [vys+(s—2V)ys]+s* cos 3 (vya—ys)

X
[

(1—9)g2—2(1+v)s*(sin § y4+cos 9 y3) + {ANys, (20d)

1 B 2ys—ya
+ ZSQ\)I:S + ————:l, (20¢)

63/ 7,

where 1/4 = 01if f(6) <0 and:

_ 2
A=sins{1+l[E+M]}, Q1)
37 6 0,

which is always positive for £ > 0 and sin 3 5 0,

b 2(s=Dys+(5s+4)y.

0, =06+ + (22)
' 3 61/72
®2=§(y4+y5)+-\/!2, (23)
;s b 2ya—ys .
A=gisind| z+ =7 |—30,5in §—50, cos I, (24)
37 6JT,
b =Wyityi—yays)+y3 25

It should be noted that eqns (20a) and (20b) are directly derived from the equilibrium eqns
(8) and 7 has been explicitly solved by substituting (20a) and (20b) into the constitutive
equation (3) corresponding to é,. Equations (20) reduce to the analogous equations given
by Ponte Castafieda (1987a), when the parameter u is set equal to zero.

Boundary conditions
The mode I symmetry and the regularity of the functions 0,4 (2, § = r, 9) ahead of the
crack tip require:

00,
05(0) = 0,5(0) = (as >3=0 =0, (26)
1.e. in terms of functions g;:
#2(0) = #:(0) = 4(0) = 0. @7

Moreover, on the crack surface, tensions 0,3 and o33 must vanish ; hence:
SAS 30:7-C
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y3(n) = ys(n) = 0. (28)

Equations (27) and (28) represent five homogeneous independent boundary conditions. In
addition to the previous five conditions, the following condition on %,(0) is obtained, by
substituting eqns (27) into (20c) :

1u 2y4(0)—y5(0) ]
,0=—{40_ 0+_|}_+
#10) = —55.0) —vys(O+ | 3 2/3[#50) + #40) — 4 (0)5(0)]

><[§[y4(0)+y5(0)1+J[y%(0)+y§(0)—y4(0)y5(0)]/3]}. @)

Moreover, eqns (20) yield the following auxiliary equations :

#1(0) = %5(0) = 0, (30)
#3(0) = #5(0) — (1+5)%4(0). (1)

Finally, at elastic—plastic boundaries functions g, cannot suffer jumps:
[ ]=[g] = =lys]=0 (32)

Integration of equations

The main advantage of the method of solution followed up to this point [analogous
to that of Ponte Castafieda (1987a)] is that the system of ODEs can be solved by using the
standard Runge—Kutta procedure. However, in order to start the integration, all the initial
values of the functions g, are required at point 3 = 0. Therefore, the normalization
condition g4(0) = 1 is used and the values of #5(0) = g and s are assigned tentatively. The
integration is then performed and the values %;(n) and g s(n) are checked. On the basis of
the error on g;(n) and gs(n), the initial values ¢ and s are reassigned and the process is
iterated. As in Ostlund and Gudmundson (1988), the modified Powell hybrid method was
used for the iteration on g and s. When the solution is obtained, all results are re-normalized
assuming g.(9,) = 1. The numerical values reported in the next section, have been obtained
by using standard double-precision routines, available in the IMSL library (subroutine
DIVPRK for the Runge-Kutta method and subroutine DNEQNF for the Powell method).

Results

As in the case of the J,-flow theory, variations in the values of v have been found to
have little influence on stress plots. Thus, all the following results are given in the case
v = 1/2. Coherently with the plane stress J,-flow theory, reloading was never revealed in
all the numerical results. In Table 1 the values of the singularity s and of the unloading

Table 1. Values of 5, g and 8, (v = 1/2)

o = 0.001
u s q 8,

0.0 —0.02866 1.96890  53.202
0.2 —0.02656 2.45930  47.770

0.3 —0.02578 2.81838  45.502
0.4 —0.02515 331713 43.445
0.5 —0.02467 4.06674  41.559
0.6 —0.02430 5.33904 39.816
0.8 —0.02394 17.65462 36.692
a=0.1
H s q 3

0.0 —0.23726 1.60583  73.646
0.2 —0.21810 1.92533  69.296
0.3 —0.21043 2.13341  67.468
0.4 —0.20379 239237  65.826
0.6 —0.19302 3.18331  63.016
0.8 —0.18497 492100  60.732
1.0 —-0.17914 12.61329  58.894
1.1 —0.17694  101.54746  58.129
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angle 3, (in degrees) are reported for o = 0.001 and o = 0.1. It should be noted that the
values coincide with those of Ponte Castafieda (1987a) in the case of u = 0. The table shows
a first effect of pressure-sensitivity, consisting of a decrease (with increasing p) of the
amplitude of the plastic sector. Moreover, parameters s and ¢ increase with yu. In the
following figures, the values of functions g, (— y; for &, and g,), evaluated for g.(9,) = 1,
are reported. These values represent (except for an amplitude factor) the stress and velocity
fields. These fields are reported in Figs 4 and $ for the case of u = 0.3 and a = 0.001. Plots
of stress and velocity fields are reported in Figs 6-10 for a = 0.001 and in Figs 11-15 for

1.5 4
3 a = 0.001

1.0 %

0.5 4

0.0 3

-0.5

1.0
a = 0.001
0.5 9
3 \ S
0.0 A \\
b ~
~
B ~
3 ~
-0.5 1 ~ o
] p =03
-1.0 a0

0 30 60 90 120 130 180
3

Fig. 5. Angular velocities distribution for small strain hardening in Cartesian and cylindrical
components (plane stress).

a = 0.001

[ |

0 30 60 90 120 150 180
J

Fig. 6. Angular distribution of hoop stresses for small strain hardening and various degrees of
pressure-sensitivity (plane stress).
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-154 u =04
] — pu =02
] —— u =00
2.0 Ly T T Ty
0 30 60 90 120 150 180

0

Fig. 7. Angular distribution of radial stresses for small strain hardening and various degrees of
pressure-sensitivity (plane stress).

0 30 80 90 120 150 180
3

Fig. 8. Angular distribution of shear stresses for small strain hardening and various degrees of
pressure-sensitivity (plane stress).

0.8 ]

0.6

0.4
] =08
] = 8.6
] = 0.4
023 =02
1 = 0.0
0.0 +————1—r——1— — e
0 30 60 90 120 150 180

9

Fig. 9. Angular distribution of effective stress for small strain hardening and various degrees of
pressure-sensitivity (plane stress).

o = 0.1. The cases of u = 0-0.8 are considered. It can be noted that the effects caused by
the pressure-sensitivity decrease for high values of a where all the fields tend to approach
the elastic solution. The main differences with respect to the J,-flow theory, become evident
for low values of o and can be summarized as:

—a reduction is observed in the amplitude of the plastic sector;
—a reduction is observed in the radial stress ahead of the crack tip;
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a = 0.001

TRRRT®
00000
ONPO

O3 ETTTR 60 90 130 180 180

Fig. 10. Angular distribution of velocities in Cartesian coordinates for small strain hardening and
various degrees of pressure-sensitivity (plane stress).

Fig. 11. Angular distribution of hoop stresses for high strain hardening and various degrees of
pressure-sensitivity (plane stress).

- 33

- — k=0

i ----u=208

-154 T =04

] — =202

3 — u# =00
"2 T e

"90 120 150 180
9

Fig. 12. Angular distribution of radial stresses for high strain hardening and various degrees of
pressure-sensitivity (plane stress).

—a corresponding reduction is observed in the mean normal stress ahead of the crack tip.

All effects become more evident by increasing u and decreasing «. The last two
conclusions are in good agreement with the observations of Li and Pan (1990b). In the
perfect-plasticity case, these authors found a decrease in ¢,,(0) with g, until an asymptote
for g is reached (0,,(0) = 0, for u = \/5/2). For small values of «, an analogous behavior
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Fig. 13. Angular distribution of shear stresses for high strain hardening and various degrees of
pressure-sensitivity (plane stress).
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Fig. 14. Angular distribution of effective stress for high strain hardening and various degrees of
pressure-sensitivity (plane stress).

wnnn

0.5 +———

Fig. 15. Angular distribution of velocities in Cartesian coordinates for high strain hardening and
various degrees of pressure-sensitivity (plane stress).

is observed using the present model (see Table 2). However, for high values of hardening,
o,.(0) tends to vanish when u approaches values greater than ﬁ/Z (see Table 1).

4. PLANE STRAIN
The plane strain condition

€33 = 0, (33)

together with (11) and (10) can be substituted into the constitutive equations (3) and into
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Table 2. Values of s, ¢ and 9, near the asymp-
tote of ¢

a=0001,v=1/2
H $ q 9,

082 —0.02393 23.66994  36.404
0.84 —0.02393 36.29621  36.120
086 —0.02393 79.78314  35.840
087 -0.02393  204.12636  35.800

911

the equilibrium equations (8). In this way a system of six first order PDEs can be obtained
in the six unknown functions o,,, ggg, 6,3, 633, U,, 5. Solutions of this system are sought in

the HHR form (12).

System of ODEs

The substitution of (12) into (8) and (3) yields a system of six ODEs in the standard

form (19), which can be expanded as:
yg = 2’5“’(34‘1)3‘4,

#s= —(+2y;,

1
¥4 = SysCot 342434+ ——d,,,

sin 8-
s 1 8 .
¥e=3ns [sg6 cOs 3+633],
2 = —y1+5[dss —v(d, +33) +AQy],
¥ = (1=9x+2s[(1+v)6,s +AQ],
where
G, = —0u__
e e

Ggs = —5(gy5sin 3+ ;5 cos §),
6,5 = —5(g4 sin 3+ g, cos 9),

1
e = A {Gss V(A +v)£+vQ33(Q 33— Os9) — O (Qss +vQ33)]

~20,50,5(0 +vQ33) + 31 (A+03:)},
. 1 . . . .
G33 = m {Vé(grr + 288) - Q33(er9_:rr + QSSESS + 2Qr8€r8)]’

Dipe— gy —
e O PR I
6./7;

5

B 2ye—gs—
0, = -2 Q33=§+w
6./7

(34a)
(34b)

(34c)

(34d)

(34¢)
(34f)

(35)

(36)

(37

(3%

(39

40
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A=(1-v)A+(Q3:+Q%+2v0,,043), 41)

which is always positive for 4 > 0, and
1 . . . .
A= Z[Qngn'*'stEss'*'stEsa +20,50,s], 42)

L=yt 3t yi—pays—ysys—yaye) + i 43)

When f (o) < 0, the elastic solution can be obtained from (34)—(43) by taking the limit 4 —

+ 0. It is worth noting that (34a,b) can be obtained by substituting (12) into (8). A
substitution of (12) and (34a,b) into (10,) and (105) yields (36) and (37). Moreover (38)
and (39) can be obtained using the plane strain condition &;; =0, (11) and (12) in the
constitutive equations (3) that give ,, and é,,. Equations (34c,d) follow from a substitution
of (12) into (10,) and (10,). Finally, (43) and (11), using (3), give (34e,f).

Boundary conditions
Mode I symmetry and the regularity of functions g, in 8 = 0 requires:

#2(0) = %3(0) = 54(0) = #5(0) = #4(0) =0, (44)
while the vanishing of 4,4 and a4 on the crack surface requires:
y3(m) = ys(n) = 0. (45)

It should be noted that only four of the conditions (44) are independent, in fact (44,) can
be obtained from the others by using (34b). In addition to (44), the following auxiliary
boundary conditions can be obtained from (34e) and (33), taking into account (44):

1 2 4 0)— 5 0)— 6 0
71(0) = —s{y4(0)—v[y5(0)+y6(0)1+Z[gu 2l ’6 ?J((())) o )]

><[g(w(onys(m+m(0))+\/12(0)]}, (46)

1 256(0) — 2 5(0) — 24(0
#6©) =y s+ O+ 5 [g + 20l )6 ?f(é) g4l >]

x [g(y4(0)+ys(0)+ye(0))+\/12(0)] =0. 47)

Continuity of all fields across elastic—plastic boundaries requires :

[ ]=[gl="-=[ys] =0 (48)

Integration of equations

Similarly to the plane stress case, (34) is solved with the Runge—Kutta method, starting
with the normalization g5(0) = 1 and two tentative values of s and z,(0) = ¢. Differently
from the plane stress case, g¢(0) is obtained solving (47) with a non-linear equation solver
(subroutine DZBREN in the IMSL library). When s and g are obtained, the results are re-
normalized assuming g.(3;) = 1.
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Table 3. Values of 5, ¢, 3, and 3, (v = 1/3)

a=0.75
M $ q 8 3,
0.00 —0.48063 1.11817 91.524 ~180.000
0.10 —0.47536 1.09930 88.999  180.000
0.20 —0.46948 1.07705 86.784  180.000
0.30 —0.46315 1.05311 84.833 180.000
040 —0.45654 1.03045 83.099  180.000
0.50 —0.44980 1.00990 81.555 180.000
a=0.1
I 5 q 9, 3,
0.00 —0.20956 1.09031 122.012 175.318
0.10 —0.20186 1.01006 107.416  179.845
o = 0.01
H s q 3, 3,
000 —0.08242 0.79740 134.998 146.242
0.10 —0.07840 0.88486 131.477 144.584
020 —0.07415 0.99017 127.663 143.727
o = 0.001
un s q 3 3,
0.00 —0.05640 0.75379 136.965 138.444
0.10 —0.05367 0.82806 133816  135.458
020 —0.05002 0.89693 130.549 132.531
0.30 —0.04561 0.96363 127.095 129.741
0.33  —0.04405 0.98837 125.999  128.962
o = 0.0001
7 s q % 3,
0.00 —0.05360 0.75007 137.421 137916
0.10  —-0.05094 0.82305 134.293 134.772
020 —-0.04709 0.88960 131.060  131.519
030 —0.04221 0.95054 127.671 128.105
033  —0.04055 0.96883 126.613 127.041
035 —0.03937 0.98229 125.894  126.319

Results
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Values of the singularity s, of the parameter g and of the unloading and reloading
angles 3, and 9, are reported in Table 3, in the cases v = 1/3, & = 0.0001-0.75, for various
values of u. For the same values of parameters, the plots of stress and velocity components
are reported in Figs (16)—(27). In contrast to the plane stress case, the plots of the stress
components are reported in the same figure for given values of . In this way, it becomes

0.5 ]

0.0 f—r~——0

0 30 60 90 120 150

180

9

Fig. 16. Angular distribution of stress components for u = 0 and & = 0.75 (plane strain).
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easier to estimate the tendency of the stress ahead of the tip to approach the hydrostatic
state. It should be remarked that the value corresponding to u = 0 does not coincide with
that of Ponte Castafieda (1987a) because of the different definition of «. As in plane stress,
the effect of the pressure-sensitivity consists of a decrease in the stress singularity s and of
the angle of unloading. Moreover, the reloading angle slightly decreases by increasing u. It
can also be noted that the pressure-sensitivity flattens the peak of the angular distribution

D. BiGoni and E. RaD:

0.0 7 Ty
i """"" Ter
1 "0 T33 =
1 -~ gy In 0.50
3
-0.5 —r—r — —— r—r——r—r—y
0 30 60 90 120 150 180

1.5 +

Fig. 19. Angular distribution of velocities in Cartesian coordinates for various degrees of pressure-
sensitivity and a = 0.75 (plane strain).

of radial stress and translates it toward 3 = 0.
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00§35 "eb 96 130 10 180

9
Fig. 20. Angular distribution of stress components for 4 = 0 and « = 0.10 (plane strain).

Fig. 22. Angular distribution of velocities in Cartesian coordinates for various degrees of pressure-
sensitivity and « = 0.10 (plane strain).

By increasing the pressure-sensitivity, the state of stress near § = 0 tends to a hydro-
static state of tension. This last observation is in agreement with the findings of Li and Pan
(1990a) and, for a different pressure-sensitive model, of Hutchinson (1982). Therefore,
by increasing the pressure-sensitivity, the stress point in the Haigh-Westergaard space,
representative of the stress state ahead of the crack tip, tends to the vertex of the yield locus.
At the vertex of the Drucker—Prager yield surface, the model has a singular behavior and
the whole solution procedure should be re-formulated. As noted by Li and Pan (1990b),
for any given value of hardening, a limit value gy, of pressure-sensitivity exists, for which
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Fig. 23. Angular distribution of stress components for = 0 and o = 0.001 (plane strain).

2.0 —
] 0.001
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Fig. 25. Angular distribution of stress components for u = 0.30 and « = 0.001 (plane strain).

the hydrostatic state of stress is reached at 3 = 0. However, Li and Pan (1990b) showed
that p,, increases approaching the perfectly-plastic solution. The model of Li and Pan
concerns the static problem and the hardening is not assumed to be constant. Therefore, a
comparison between our model and that of Li and Pan is not straightforward. However,
our results show a more involved trend (see Table 3). In fact, for high values of hardening,
Mim inCreases by increasing the hardening and, vice versa, for low values of hardening
increases by decreasing the hardening.
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Fig. 27. Angular distribution of velocities in Cartesian coordinates for various degrees of pressure-
sensitivity and « = 0.001 (plane strain).

5. CONCLUSIONS

In this paper, the near tip fields of a steadily propagating crack under the mode I
condition have been obtained for the Drucker—Prager incremental elastoplastic model.

From the present study it can be concluded that an increase in the pressure-sensitivity
in the plane stress case produces:

—a reduction in the singularity of the fields;

—a reduction in the ratio between the radial and the hoop stresses ahead of the crack tip,
connected with a decrease in the mean normal stress ahead of the crack tip;

—a reduction in size of the plastic sector;

—a sharpening of the peaks of the angular distributions of stress components.

The first observation is common with the plane strain case where, in addition, an
increase in the pressure-sensitivity yields :

—a translation of the maximum in the radial stress toward the crack tip;
—a decrease in the stress deviator ahead of the crack tip.

It can be concluded that the pressure-sensitivity of the analysed model makes the
singularity of the fields weaker than in the J,-flow theory. This fact should imply a crack
growth stabilization. An analogous stabilizing effect should also come from the observed
relaxation in the stress ahead of the crack tip.
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APPENDIX

Derivation of eqns (21)

Let e, and e, be the unit vectors in the directions x, and x, respectively, e, the unit vector in the r direction
and e, the unit vector orthogonal to e, (in the plane of e, and e,). The material derivative of the component o4
is defined as:

(e, oe5) = e, de;+&, aey+e, - gé;. (AD

By performing the material derivative of the following coordinate transformations:

e, =cosJe,+sinJe,,
€ = —sin 3e,+cos S e,, (AD)
the following is obtained :
¢, = (cos 9)'e, + (sin 9)’e,,
! ) e +(sind)e, (A3)
& = —(sin 8) e, +(cos 9)'e,.
From (A3), using (6) and (92) the following is readily obtained :
. I,
é = “V;smSes,
| (a4
&y = —'Y/'r- sin Se,‘
Using (A4), (Al) gives:
. . sin &
e, -dey = (e, " gey) ~¥" (e;- ey —e, " ae,). (A5)

r

The derivative of the component 6,5 in eqn (AS) can be transformed via (6) and (9a). In this way eqn (10a)
is obtained. Equations (10b) and (10c) can be obtained with a procedure analogous to the above if the substitutions
e, - ¢, and e, — ¢, are made.



